Harmonic maps, hyperbolic cohomology and higher milnor inequalities
نویسندگان
چکیده
منابع مشابه
Harmonic Maps between 3 - Dimensional Hyperbolic Spaces
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملIntersection Cohomology, Monodromy, and the Milnor Fiber
We say that a complex analytic space, X is an intersection cohomology manifold if and only if the shifted constant sheaf on X is isomorphic to intersection cohomology. Given an analytic function f on an intersection cohomology manifold, we describe a simple relation between V (f) being an intersection cohomology manifold and the vanishing cycle Milnor monodromy of f . As an easy application, we...
متن کاملBranched Covers of Hyperbolic Manifolds and Harmonic Maps
Let f : M → N be a homotopy equivalence between closed negatively curved manifolds. The fundamental existence results of Eells and Sampson [5] and uniqueness of Hartmann [15] and Al’ber [1] grant the existence of a unique harmonic map h homotopic to f . Based on the enormous success of the harmonic map technique Lawson and Yau conjectured that the harmonic map h should be a diffeomorphism. This...
متن کاملIsoperimetric Inequalities and the Friedlander–milnor Conjecture
We prove that Friedlander’s generalized isomorphism conjecture on the cohomology of algebraic groups, and hence Milnor’s conjecture on the cohomology of the complex algebraic Lie group G(C) made discrete, are equivalent to the existence of an isoperimetric inequality in the homological bar complex of G(F ), where F is the algebraic closure of a finite field.
متن کاملHarmonic Maps between 3 - Dimensional Hyperbolic Spaces Vladimir
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1993
ISSN: 0040-9383
DOI: 10.1016/0040-9383(93)90056-2